metal-organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Xiu-Jian Wang,* Qing-Ling Ni and Zhong-Shu Shen

School of Chemistry and Chemical Engineering, Guangxi Normal University, Guilin 541004, People's Republic of China

Correspondence e-mail: wang1_xj@yahoo.com.cn

Key indicators

Single-crystal X-ray study T = 293 K Mean σ (C–C) = 0.006 Å R factor = 0.020 wR factor = 0.047 Data-to-parameter ratio = 20.8

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Dibromobis[pyridine-2(1H)-thione-*kS*]cadmium(II)

In the title compound, $[CdBr_2(C_5H_5NS)_2]$, the Cd^{II} cation (site symmetry 2) is coordinated by the S atoms of two pyridine-2thione ligands and two Br⁻ ions in a distorted tetrahedral geometry [Cd-S = 2.5171 (10) Å and Cd-Br = 2.5911 (6) Å]. The molecules are linked *via* N-H···Br, C-H···Br and C-H···S interactions into an extended network.

Comment

Pyridine-2-thione (HPyS) is a versatile sulfur-containing ligand with differing coordination modes to metal cations (Su *et al.*, 2000, 2002; Hao *et al.*, 2000). In a further exploration of the coordination chemistry of HPyS, we report the synthesis and structure of the title compound, dibromobis(pyridine-2(1H)-thione- κ S)cadmium(II), (I) (Fig. 1), in which the HPyS acts as a terminal S-bonded species.

Compound (I) is isostructural with dichlorobis(pyridinium-2-thiolato)cadmium, (II) (Wang *et al.*, 2004). The asymmetric unit of (I) consist of an HPyS molecule, a Br⁻ ion and a Cd^{II} cation, the latter occupying a special position with twofold symmetry. The Cd^{II} atom is thus coordinated by two S atoms of two HPyS ligands and two bromide ions in a distorted tetrahedral geometry (Table 1). The largest angle, $S-Cd-S^{i}$

Figure 1

© 2004 International Union of Crystallography Printed in Great Britain – all rights reserved View of (I), with displacement ellipsoids drawn at the 30% probability level and H atoms shown as small spheres of arbitrary radii. The unlabelled atoms are generated by the symmetry code $(\frac{1}{2} - x, \frac{1}{2} - y, z)$.

Received 15 November 2004 Accepted 16 November 2004 Online 27 November 2004 (see Table 1 for symmetry code), is 121.16 (6)°, while the smallest angle, $Br-Cd-S^{i}$, is 101.73 (2)°. The dihedral angle between $S-Cd-S^{i}$ and $Br-Cd-Br^{i}$, which can be considered as an indication of the degree of distortion of a tetrahedral complex, is 85.2 (2)°.

The Cd–S bond length in (I) is 2.5171 (10) Å, which is similar to that in (II) (Wang *et al.*, 2004), but longer than that in $[Cd(S-2-PhCONHC_6H_4)_2(1-MeIm)_2]$ (1-MeIm is 1-methylimidazole; Sun *et al.*, 1999). The Cd–Br bond length in (I) is 2.5911 (6) Å, which is within the sum of the covalent radii for cadmium and bromine (2.63 Å).

There are N-H···Br hydrogen bonds and weak C-H···Br and C-H···S interactions (Venkataramanan *et al.*, 2004; Nishio, 2004) in (I) (Table 2). These result in a threedimensional network (Fig. 2).

Experimental

A solution of $Cd(NO_3)_2 \cdot 4H_2O$ (0.238 g, 0.75 mmol) in methanol (10 ml) was added to a solution (10 ml) of pyridine-2-thiol (0.166 g, 1.5 mmol) in methanol and stirred at room temperature for 3 h. $Bu_4NBr(0.322 \text{ g}, 1 \text{ mmol})$ was then added to the mixture and stirring was continued for 3 h. About three weeks later, light-yellow crystals of (I) were obtained as the solvent slowly evaporated.

Crystal data

$[CdBr_2(C_5H_5NS)_2]$	Mo $K\alpha$ radiation
$M_r = 494.54$	Cell parameters from 2990
Orthorhombic, Fdd2	reflections
a = 13.050 (3) Å	$\theta = 2.9-27.0^{\circ}$
b = 28.521 (6) Å	$\mu = 7.04 \text{ mm}^{-1}$
c = 8.065 (2) Å	T = 293 (2) K
V = 3001.8 (12) Å ³	Rod, light yellow
Z = 8	$0.18 \times 0.07 \times 0.06 \text{ mm}$
$D_x = 2.189 \text{ Mg m}^{-3}$	
Data collection	
Bruker SMART CCD	1622 independent reflections
diffractometer	1535 reflections with $I > 2\sigma(I)$
ω scans	$R_{\rm int} = 0.027$
Absorption correction: multi-scan	$\theta_{\rm max} = 27.0^{\circ}$
(SADABS: Bruker, 1998)	$h = -16 \rightarrow 7$
$T_{\rm min} = 0.559, T_{\rm max} = 0.656$	$k = -36 \rightarrow 35$
4357 measured reflections	$l = -10 \rightarrow 10$
Refinement	
Refinement on F^2	$w = 1/[\sigma^2(F_o^2) + (0.0271P)^2]$

Refinement on F^2	w
$R[F^2 > 2\sigma(F^2)] = 0.020$	
$wR(F^2) = 0.047$	(2
S = 0.99	Δ
1622 reflections	Δ
78 parameters	A
H-atom parameters constrained	
	171

$w = 1/[\sigma^2(F_o^2) + (0.0271P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.026$ $\Delta\rho_{max} = 0.43 \text{ e } \text{Å}^{-3}$ $\Delta\rho_{min} = -0.38 \text{ e } \text{Å}^{-3}$ Absolute structure: Flack (1983), 745 Friedel pairs Flack parameter = 0.060 (8)

Table 1

Selected	geometric	parameters	(Å,	°).	
----------	-----------	------------	-----	-----	--

Cd-S1	2.5171 (10)	Cd-Br	2.5911 (6)	
S1 ⁱ -Cd-S1	121.16 (6)	S1-Cd-Br	109.04 (3)	
S1 ⁱ -Cd-Br	101.73 (2)	Br-Cd-Br ⁱ	114.77 (3)	

Symmetry code: (i) $\frac{1}{2} - x, \frac{1}{2} - y, z$.

Table 2Hydrogen-bonding geometry (Å, $^{\circ}$).

$D - H \cdot \cdot \cdot A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$C5-H5A\cdots Br^{ii}$	0.93	3.00	3.776 (4)	142
$C3-H3A\cdots S1^{iii}$	0.93	2.90	3.715 (4)	147
$N1-H1A\cdots Br^{iv}$	0.86	2.55	3.382 (3)	163
	13.	() 1 1	· · · · 1 · · · 1	1

Symmetry codes: (ii) $\frac{1}{4} - x$, $y - \frac{1}{4}$, $\frac{3}{4} + z$; (iii) $x - \frac{1}{2}$, $y, \frac{1}{2} + z$; (iv) $\frac{1}{4} + x$, $\frac{1}{4} - y$, $\frac{1}{4} + z$.

All H atoms were apparent in a difference map. They were repositioned in idealized positions and refined as riding on their carrier atoms $[C-H = 0.93 \text{ Å} \text{ and } U_{iso}(H) = 1.2U_{eq}(C)].$

Data collection: *SMART* (Bruker, 1998); cell refinement: *SAINT* (Bruker, 1998); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS*97 (Sheldrick, 1997*a*); program(s) used to refine structure: *SHELXL*97 (Sheldrick, 1997*a*); molecular graphics: *SHELXTL* (Sheldrick, 1997*b*); software used to prepare material for publication: *SHELXTL*.

This work was sponsored by the NSF of Guangxi Province (No. 0447031).

References

- Bruker (1998). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Hao, L., Mansour, M. A., Lachicotte, R. J., Gysling, H. J. & Eisenberg, R. (2000). Inorg. Chem. 39, 5520–5529.
- Nishio, M. (2004). CrystEngComm, 6, 130-158.
- Sheldrick, G. M. (1997a). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Sheldrick, G. M. (1997b). SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.
- Su, W., Hong, M., Weng, J., Cao, R. & Lu, S. (2000). Angew Chem. Int. Ed. 39, 2911–2914.
- Su, W., Hong, M., Weng, J., Liang, Y., Zhao, Y., Cao, R., Zhou, Z. & Chan, A. S. C. (2002). *Inorg. Chim. Acta*, 331, 8–15.
- Sun, W. Y., Zhang, L. & Yu, K. B. (1999). J. Chem. Soc. Dalton Trans. pp. 795–798.
- Venkataramanan, B, Saifudin, M. A., Jagadese, J. V. & Suresh, V. (2004). CrystEngComm, 6, 284–289.
- Wang, X.-J., Ni, Q.-L., Bi, X.-S. & Jian, H.-X. (2004). Acta Cryst. E60, m1859– m1860.